What is the Vaccinium Coordinated Agricultural Project (VacCAP)?
- North America is the world's leading producer of blueberries and cranberries
- Consumers demand for fruit continues to increase

Vaccinium

- **Cranberry**
- **Highbush blueberry**
- **Rabbiteye blueberry**
- **Wild/low bush blueberry**
- **Lingonberry**
- **Bilberry**

Phenolics
- Hydroxycinnamic acids
- Flavonols
- Anthocyanin
- Pro-anthocyanin

Terpenoids
- Iridoids

Crop → Bioactives → Health

Blueberry health research Cranberry health research
- Breeding is an industry top priority
- > 15 breeding programs in US, with >13 commodity groups supporting them
- No coordination (duplications and competition for limited federal funding)
- Breeding by traditional methods (phenotyping based)
- Limited DNA tools for Marker Assisted Breeding
- Limited standardized phenotyping methods

Breeding targets:
- Disease resistance
- Pest resistance
- Fruit quality
- Stress tolerance
- Plant architecture and fruit attributes for machine harvestability
• Through a survey, improving fruit quality was highlighted as a top priority for the industry—prompting the establishment of VacCAP
• The Vaccinium Coordinated Agricultural Project (VacCAP) is a nationwide project aimed at developing new genetic tools to enhance breeding for improved fruit quality of cranberries and blueberries
2019-VacciniumCAP: Leveraging genetic and genomic resources to enable development of blueberry and cranberry cultivars with improved fruit quality attributes

Team: 21 PIs, >50 partners, 25 institutions (US, Canada, New Zealand, Italy, Scotland)
2. Discover - Link DNA to FC
- Link FC to FQ (consumers, shelf life, mech. harvest)

3. Deliver - DNA markers
- F1 progenies to pyramid FQ traits

4. Assess - Link FQ and FC to economic value

5. Engage - Transfer deliverables
- Foster collaborations
- Evaluate project

Stakeholders
- Breeders
- Allied scientists
- Mentees/Trainees
- Industry stakeholders
Executive committee:
1) Massimo Iorizzo - PD
2) Patrick Edger - Comp. genom.
3) Nahla Bassil - Genot.
5) Juan Zalapa – Phen. Cran.
7) Chad Finn – Breed. Blue.
8) Nicholi Vorsa – Breed. Cran.
10) Dorrie Main – Data Man.
12) Mary Ann Lila – Adm. Advisor.
13) James Hancock - AP
Supporting Organizations

- Oregon Cranberry Grower Association
- Blueberries
- Mariani
- Washington Blueberry Commission
- Blueberry Institute
- Wayne County Blueberry Growers Association
- California Blueberry Commission
- North American Blueberry Council
- New Jersey Blueberry Cranberry Research Council
- Dole
- Fall Creek Farm & Nursery, Inc.
- Valley Corporation
- Driscoll's
- Ocean Spray
- BC Blueberries
- Florida Blueberry Growers Association
- Georgia Blueberries
- North Carolina Blueberries
- Wisconsin State Cranberry Growers Association
- Kentsucky Blueberry Growers Association
Stakeholder Panel
- James Hancock, Berry Blue LLC
- Nicole Hansen, Cranberry Grower
- Matt Kramer, Fall Creek Farm and Nursery
- James Olmstead, Driscoll’s, Inc.
- Rod Serres, Ocean Spray Cranberries, Inc.
- William Frantz, The Cranberry Institute

Scientific Panel
- Robin Buell, Michigan State University
- Jeffrey Endelman, University of Wisconsin-Madison
- Mario Ferruzzi, North Carolina State University
- Kim Hummer, USDA-ARS-NCGR (OR)
- Amy Iezzoni, Michigan State University
- Brandon McFadden, University of Delaware
- Anne Plotto, USDA-ARS (FL)
- Moira Sheehan, Cornell University
- Cindy Tong, University of Minnesota

Extension Panel
- Rodney Cook, Ag-View Consulting, Inc.
- David Eddy, Master Media Worldwide
- Tim Martinson, Cornell University
- Tom Peerbolt, The Northwest Berry Foundation
- Christopher Watkins, Cornell University
VacCAP Core Focus

DNA

Fruit Characteristics (FC)

Appearance:
- Size
- Shape
- Defect free (e.g., disease, resistance to bruising)

Texture:
- Firmness, softness
- Crispness

Chemical composition:
- Non-volatile (phytochemicals, sugar, organic acids)
- Volatile chemical composition

Fruit Quality (FQ)

Consumer experience:
- Taste
- Flavor/aroma
- Shelf life
- Health effects
- Consumer preferences and willingness to pay/buy

(From Yung et al., 2018; Giongo et al., 2018)
Objectives

1. Establish genomic resources to enable effective association mapping studies in blueberry and cranberry

2. Discover DNA markers and fruit characteristics that maximize industry profitability and consumer preferences in blueberry and cranberry

3. Deliver molecular and genetic resources to improve blueberry and cranberry fruit quality traits that maximize industry profitability and consumers preferences

4. Assess the potential socio-economic impact of blueberry and cranberry fruit quality improvements on market demand

5. Engage U.S. Vaccinium breeders and stakeholder groups to transfer advanced phenomics and genomics tools to build a more efficient cultivar development system (in progress)
Develop and integrate Website platforms
- Breeder tools, protocols
- Genetic and genomic resources and tools
- Advertise for events (webinars and workshops)
- Archived newsletters, and webinars
How We Engage You

Newsletter
- Project activities
- Preliminary results
- Outcomes
- News
- Future Outreach events

Webinars/video
- Phenotyping fruit texture
- Vaccinium Pan genome
- Introduction to breeding tools (GDV, Field book)
- Scoring SNP in polyploidy sp.
- Marker trait analysis in polyploidy sp.
VacCAP project outputs will increase the knowledge of:

- Cranberry and blueberry genome structure and evolution
- Genetic mechanisms and genes controlling economically important traits including fruit characteristics
- The relationships between fruit characteristics and fruit quality (shelf life, texture, bruising and sensory traits)
- Consumer behavior and interests regarding blueberry fruit quality and cranberry products
- New *Vaccinium* stakeholder priorities for the sustainability and profitability of the industry

What Success Would Look Like: Discovery
VacCAP deliverables and outcomes will be used by the Vaccinium community for the following goals:

- VacCAP DNA tools and phenotyping methods will be utilized by VacCAP PIs and the Vaccinium community worldwide to advance breeding and/or research programs.
- VacCAP outcomes will be used by growers, processors and distributors to plan production and distribution strategies.
- Funding of new off-shoot projects from VacCAP developed tools and deliverables with new collaborative alliances established.
The VacCAP team influences the next generation of breeders and scientists, increasing knowledge through collaborations:

- MS/PhD students and post-docs are trained in plant breeding, genetics, fruit phenotyping, postharvest physiology, socio-economics, sensory analysis and extension practices, to become the next generation of breeders, scientists, and agriculture professionals.
What Success Would Look Like: Long-Term

- Increased ability of blueberry and cranberry growers, processors and distributors to market a higher percentage of premium fruit using improved cultivars without increased production costs.

- Increased consumption of blueberry and cranberry products in the US and worldwide due to improved fruit quality.

- Increased efficiency of *Vaccinium* breeding programs for selection and improvement of fruit quality traits important to consumers and industry.

- Increased profitability, competitiveness, and sustainability of *Vaccinium* industries.
Stay Engaged With Our Team

• Visit the [VacCAP web site](#)

• [Sign up](#) for and read our newsletters

• Find and use the latest genomic and breeding management resources on the [GDV website](#)

• Follow us on the Twitter account: [@VacciniumCAP](#)

• Subscribe to our YouTube channel: [VacCAP Project](#)